Quiz

$$
\begin{aligned}
& \frac{\alpha u(z}{\sigma_{j}=1} \quad 2 \tan ^{-1}\left(2^{-(j+1)}\right) \\
& \sigma_{j}=-1 \\
& -2 \tan ^{-1}\left(2^{-(j+1)}\right) \\
& \sigma_{j}=0 \quad 0
\end{aligned}
$$

$$
K=\prod_{j=0}^{n}\left(1+2^{-2(j+1)}\right)
$$

We cen dos this to allow redundancy

What if we ard the forlorn?
allow for a nostutu b) 0 rotate 9 then \downarrow to cancel s -
no, it doesn't support early rotation, because we need to account for the x and, upset d_{m} to the Id rotation of $\sigma_{j} 2$ in the representation,
So we can get away by not adding all of z to determine the sign, which allows us to use CSA's, and save on time.
this method is a linear convergence algorithm
Exponents
Try to compute $y=e^{x}$ we know x, want to calculcky

$$
\begin{aligned}
& x_{i+1}=x_{i}-\ln b_{i} \quad \text { we start } Q x_{0}=0 \text {, then } x_{n}=x \\
& y_{i+1}=y_{i} \cdot b_{i} \quad y_{0}=1 \text {, and as we update } x
\end{aligned}
$$ additively, we uparte y

jesu shift multipleritavely, and the find
choose $b_{i} \triangleq 1+\sigma_{i} 2^{-i} \quad$ result, ya, will be the y we wonk
thus,

$$
\begin{aligned}
& \text { thus, } \\
& y_{i+1}=y_{i}+y_{i} \sigma_{i} 2^{-i} \quad \sum \ln \left(1-2^{-i}\right) \leq x_{0} \leq \sum \ln \left(1+2^{-i}\right) \\
& \text { il weds it }+i 4 \infty,-1.24 \leq x_{0} \leq 1.56
\end{aligned}
$$

What about for logarithms?

$$
y=\ln x \text { we know } x \text {, we want } y
$$

$$
\begin{array}{rlrl}
x_{i+1} & =x_{i} b_{i} \quad & \text { we want } x_{n} \rightarrow 1, \text { became } \\
y_{i+1}=y_{i}-\ln b_{i} & \text { if } x_{n}=1, \quad x_{0} \prod_{i=0}^{n} b_{i}=1 \\
& \Rightarrow x_{0}=\frac{1}{\frac{n}{\prod} b_{i}} x_{0}=x \\
y_{n}=y_{0}-\sum_{i=0}^{n} \ln b_{i}=y_{0}+\ln \left(\frac{1}{\prod_{i=0}^{n} b_{i}}\right)=y_{0}+\ln x^{n} \\
& y_{0} \text { should be } 0,
\end{array}
$$ to make sure it does 7 show up her

Sines and Cosines are typreclly calculated w/ software so we could look at math. C to look at the actual algorithms. OMG Quiz! Caw! j/k

